
TracerX: Dynamic Symbolic Execution with
Interpolation (Competition Contribution)

Joxan Jaffar , Rasool Maghareh , Sangharatna Godboley , and
Xuan-Linh Ha

National University of Singapore, Singapore, Singapore
{joxan,rasool,sanghara,haxl}@comp.nus.edu.sg
http://www.springer.com/gp/computer-science/lncs

Abstract. Dynamic Symbolic Execution (DSE) is an important method
for testing of programs. An important system on DSE is KLEE [1] which
inputs a C/C++ program annotated with symbolic variables, compiles
it into LLVM, and then emulates the execution paths of LLVM using
a specified backtracking strategy. The major challenge in symbolic ex-
ecution is path explosion. The method of abstraction learning [7] has
been used to address this. The key step here is the computation of an
interpolant to represent the learned abstraction.
TracerX, our tool, is built on top of KLEE and it implements and uti-
lizes abstraction learning. The core feature in abstraction learning is sub-
sumption of paths whose traversals are deemed to no longer be necessary
due to similarity with already-traversed paths. Despite the overhead of
computing interpolants, the pruning of the symbolic execution tree that
interpolants provide often brings significant overall benefits. In particu-
lar, TracerX can fully explore many programs that would be impossible
for any non-pruning system like KLEE to do so.

Keywords: Dynamic Symbolic Execution, Interpolation, Testing, Code
Coverage

1 Overview and Software Architecture

Symbolic execution has emerged as an important method to reason about pro-
grams, in both verification and testing. By reasoning about inputs as symbolic
entities, its fundamental advantage over traditional black-box testing, which uses
concrete inputs, is simply that it has better coverage of program paths. In par-
ticular, dynamic symbolic execution (DSE), where the execution space is ex-
plored path-by-path, has been shown effective in systems such as DART [4] and
KLEE [1]. A key advantage of DSE is that by examining a single path, the anal-
ysis can be both precise, and efficient. However, the key disadvantage of DSE is
that the number of program paths is in general exponential in the program size,
and most available implementations of DSE do not employ a general technique
to prune away some paths.

In TracerX, our primary objective is to address the path explosion problem in
DSE. More specifically, we wish to perform path-by-path exploration of DSE to

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 530–534, 2020.
https://doi.org/10.1007/978-3-030-45234-6 28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_28&domain=pdf
http://orcid.org/0000-0001-9988-6144
http://orcid.org/0000-0002-8147-6590
http://orcid.org/0000-0002-6169-6334
http://orcid.org/0000-0003-1916-6812
https://doi.org/10.1007/978-3-030-45234-6_28

TracerX: Dynamic Symbolic Execution with Interpolation 531

enjoy its benefits, but we include a pruning mechanism so that a generated path
can be eliminated if it is guaranteed not to violate the stated safety conditions.
Toward this goal, we employ the method of abstraction learning [7], which is
more popularly known as lazy annotations [8,9].

Fig. 1. TracerX Framework

The software ar-
chitecture of TracerX
is presented in Fig.
1. The core feature
of TracerX is the use
of interpolation, which
serves to generalize the
context of a node in
the symbolic execution
tree (SET) with an approximation of the weakest precondition of the node. This
method was implemented in the TRACER system [6], which was the first system
to demonstrate DSE with pruning. TRACER was primarily used to evaluate new
algorithms in verification, analysis and testing, e.g., [2,3,5]. While TRACER was
able to perform bounded verification and testing on many examples, it could not
accommodate industrial programs which often dynamically manipulate the heap
memory. TracerX combines the state-of-the-art DSE technology used in KLEE
with the pruning technology in TRACER to address this issue.

x = 0;

if (b1) x += 12;

if (b2) x += 15;

assert (x != 28);

Fig. 2. A Sample Program

Now we explain interpolation in more detail.
While exploring the SET, an interpolant of a state
is an abstraction of it which ensures the safety of the
subtree rooted at that state. In other words, if we
continue the execution with the interpolant instead
of the state we will not reach any error. Thus, upon
encountering another state of the same program point, if the context of the
state implies the interpolant formula, then continuing the execution from the
new state will not lead to any error. Consequently, we can prune the subtree
rooted at the new state.

<1a>

<4a>

<5a> <6a>x ≠ 13

assert(x ≠ 28)

x = 0

<2a> <3a>

x += 12

<4b>

skip

<7a> <7b>

x += 15 skip

x ≠ 28

x≠13 ∧ x ≠28

x ≠ 1 ∧ x ≠16 x ≠ 13 ∧ x ≠ 28

x ≠ 1 ∧ x ≠16 ∧
x ≠ 13 ∧ x ≠ 28

Fig. 3. SET with Interpolation of Program
in Fig. 2

Example 1. Consider the program
in Fig. 2 and its SET explored by
SE with interpolation in Fig. 3.
The variables b1, b2 are symbolic
and all combinations of the boolean
conditions are satisfiable. The final
statement assert(x 6= 28) is the tar-
get. The path condition for every
path is shown in the set in black
color.

We traverse the SET in a left-
right depth-first manner. In the end
of the first path x = 27 which does
not violate the assertion. Consider-

532 J. Jaffar et al.

ing the target and the update on variable x between 〈5a〉 and 〈7a〉, we generate
an interpolant which store the weakest precondition at 〈5a〉: x 6= 13 (Shown in
purple color). Similarly, an interpolant is also computed at 〈6a〉: x 6= 28.

Now, combining these two interpolants, we generate an interpolant for the
node 〈4a〉. Note that the weakest precondition here is b2 −→ (x 6= 13) ∧ !b2 −→
(x 6= 28). We approximate this formula with the conjunction (x 6= 13) ∧ (x 6=
28). Next, moving to 〈2a〉, the interpolant at 〈4a〉 is received and considering
the update on variable x between 〈2a〉 and 〈4a〉, an interpolant is generated at
〈2a〉: x 6= 1 ∧ x 6= 16. Now moving to 〈4b〉, we check if the path condition
at 〈4b〉 (x = 0∧!b1 ∧ skip) implies the interpolant that was generated at 〈4a〉
(x 6= 13 ∧ x 6= 28). Since the implication holds, node 〈4b〉 is subsumed with
node 〈4a〉 (indicated by orange arrow) and the subtree below 〈4b〉 is pruned. The
SET traversal continues by computing the interpolant at 〈3a〉 which is computed
from x 6= 13 ∧ x 6= 28 subsuming 〈4b〉 and the updates between 〈3a〉 and 〈4b〉
(which is skip). The interpolants at 〈2a〉 and 〈3a〉 are then combined to generate
an interpolant at 〈1a〉: x 6= 1 ∧ x 6= 16 ∧ x 6= 13 ∧ x 6= 28. Note that KLEE
would explore the 4 paths in the SET while TracerX explores only two paths to
the end. ut

2 Discussion on Strengths and Weaknesses

In Test-Comp 2020, TracerX stood at 6th rank in overall. Inspecting the results,
TracerX was one of the teams having the highest score in: cover-branches.BitVec-
tors and cover-error.ControlFlow. Moreover, TracerX was one of the top 3 scor-
ers in: cover-branches.DeviceDriversLinux64, cover-branches.ControlFlow, and
cover-error.BitVectors.

TracerX also accomplished more tasks by a meaningful margin compared to
KLEE in: cover-branches.BusyBox and cover-branches.MainHeap. On the other
hand, TracerX performed poorly in 3 sub-categories: cover-error.ReachSafety-
ECA, ReachSafety-Sequentialized (both branches) and cover-error.Floats1.

We should emphasize that TracerX in general requires symbolic execution
trees to be bounded. Otherwise, interpolants cannot be computed. Moreover,
TracerX is a heavy-weight approach and the overhead pays off as the problems
gets harder. As a result it is expected for other light-weight approaches to have
better results compared to TracerX in short timeout and memory limits.

Moreover, it appears that the configuration we used to explore unbounded
programs (max-depth=1000) and also in the benchexec tool-info (wrongly run-
ning TracerX with the default memory (2GB) instead of 15GB RAM) might
have had a profound effect in reaching timeout on the test programs.

1 TracerX does not support symbolic expressions over floating point arithmetic.

TracerX: Dynamic Symbolic Execution with Interpolation 533

3 Tool Setup and Configuration

The TracerX version used in TEST-COMP 2020 is available at https://gitlab.
com/sosy-lab/test-comp/archives-2020/blob/testcomp20/2020/tracerx.zip2. The
configuration/setting and running of TracerX is similar to KLEE. TracerX has
some extra command line arguments. Firstly, the argument “solver-backend=z3”
should be provided to run TracerX with interpolation. Without this option Trac-
erX will run similar to KLEE. TracerX can do exploration in both the Random
and DFS modes. However, the DFS exploration mode (using “-search=dfs”) is
preferred since it naturally increases the chance of generating interpolants. Fur-
thermore, the option “-subsumed-test” should be used to generate a test-case
from the subsumed nodes. This option is required for the coverage competi-
tion. The following is a sample full command line after compiling and running
tracerx.py:
“../tracerx-svcomp/bin/../tracerx build/Release+Asserts/bin/klee -max-

memory=14305 -output-dir=../tracerx-svcomp/bin/../test-suite -search=dfs

-solver-backend=z3 -write-xml-tests -tc-orig=s3 clnt 3.BV.c.cil-2a.c -tc-

hash=acd2272114f13977ea7bdc712c7567ec2e43dc8e07ef033eb67487bab7f66d59 -

-dump-states-on-halt=false -exit-on-error-type=Assert -max-depth=1000

-max-time=900 /tmp/tmpvwkb459r/s3 clnt 3.BV.c.cil-2a.c.bc”
The two command line options, “-max-memory” and “-max-time” are used

to set the maximum memory and time budget. The options “-write-xml-tests”,
“-tc-orig”, and “-tc-hash” are to record the test input information. Once the
halt instruction is invoked, “-dump-states-on-halt” creates a test case from all
active states3. The option “-exit-on-error-type=Assert” terminates the search as
soon as a bug is found (used only for coverage categories). The command line
option “-max-depth=1000” is used to bound the maximum number of branches
explored in unbounded paths.

4 Software Project and Contributors

The information about TracerX with self-contained binary is publicly available at
https://www.comp.nus.edu.sg/∼tracerx/. Also, the source code can be accessed
at https://github.com/tracer-x/klee repository. Authors of this paper and other
colleagues have contributed and developed TracerX at National University of
Singapore, Singapore. The authors of this paper acknowledge the direct and
indirect support of their students, former researchers, and colleagues.

2 The benchexec tool-info file is https://github.com/sosy-lab/benchexec/blob/master/
benchexec/tools/tracerx.py and the benchmark description file is https://gitlab.
com/sosy-lab/test-comp/bench-defs/blob/master/benchmark-defs/tracerx.xml.

3 This was disabled to save execution time. However, it would have been better to
enable this option for maximum coverage.

https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/testcomp20/2020/tracerx.zip
https://gitlab.com/sosy-lab/test-comp/archives-2020/blob/testcomp20/2020/tracerx.zip
https://www.comp.nus.edu.sg/~tracerx/
https://github.com/tracer-x/klee
https://github.com/sosy-lab/benchexec/blob/master/benchexec/tools/tracerx.py
https://github.com/sosy-lab/benchexec/blob/master/benchexec/tools/tracerx.py
https://gitlab.com/sosy-lab/test-comp/bench-defs/blob/master/benchmark-defs/tracerx.xml
https://gitlab.com/sosy-lab/test-comp/bench-defs/blob/master/benchmark-defs/tracerx.xml

534 J. Jaffar et al.

References

1. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: Proceedings of the
8th OSDI. pp. 209–224 (2008)

2. Chu, D.H., Jaffar, J.: A complete method for symmetry reduction in safety verifi-
cation. In: 24th International Conference on Computer Aided Verification (CAV).
pp. 616–633, USA. Springer (2012)

3. Chu, D.H., Jaffar, J., Maghareh, R.: Precise cache timing analysis via symbolic
execution. In: 22nd IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). pp. 1–12 (2016)

4. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation (PLDI). pp. 213–223 (2005)

5. Jaffar, J., Murali, V., Navas, J.A.: Boosting concolic testing via interpolation. In:
Proceedings of the 9th Conference on Foundations of Software Engineering (FSE).
pp. 48–58 (2013)

6. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a symbolic execution
tool for verification. In: 24th International Conference on Computer Aided Verifica-
tion (CAV). pp. 758–766. Springer (2012)

7. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for CLP traversal. In:
15th International Conference on Principles and Practice of Constraint Program-
ming (CP). pp. 454–469. Springer (2009)

8. McMillan, K.L.: Lazy annotation for program testing and verification. In: 22nd In-
ternational Conference on Computer Aided Verification (CAV). pp. 104–118 (2010)

9. Mcmillan, K.L.: Lazy annotation revisited. In: 26th International Conference on
Computer Aided Verification (CAV). pp. 243–259 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	TracerX: Dynamic Symbolic Execution with Interpolation (Competition Contribution)
	1 Overview and Software Architecture
	2 Discussion on Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References

