
Optimal MC/DC Test Case Generation
Joxan Jaffar

National University of Singapore
joxan@comp.nus.edu.sg

Sangharatna Godboley
National University of Singapore

sanghara@comp.nus.edu.sg

Rasool Maghareh
National University of Singapore

rasool@comp.nus.edu.sg

Abstract—We present a new method for automated test case
generation based on symbolic execution and a custom process
of interpolation. The method first identifies program execution
paths in order to define a corresponding set of test inputs. It
then annotates the program with assertions so as to identify
feasible and infeasible cases, the former of which are processed
to produce the desired test inputs. The main contribution is
that performing symbolic execution using a custom form of
interpolation significantly prunes the search space. Our main
result is that the set of Modified Condition/Decision Coverage
(MC/DC) test cases we produce is optimal.

Index Terms—Software Testing, Code Coverage, MC/DC, Sym-
bolic Execution

I. INTRODUCTION

In testing, MC/DC [1] requires only a linear number of tests
cases with respect to the number of atomic conditions (AC) in
a program, in contrast to the combinatorially explosive Multi-
ple Condition Coverage (MCC). In industry, it is mandatory to
produce MC/DC report for Level A category software (critical-
safety application in avionics domain) [1]. Now even though
MC/DC requires just a small number of test inputs, generating
these automatically remains a challenging task.

Our method, which is based on Dynamic Symbolic Exe-
cution (DSE), addresses this problem. DSE is a promising
approach to identify all the bugs present in a program. In this
approach, a symbolic execution engine traverses the symbolic
execution tree (SET) of a program by path enumeration. This
has an advantage over traditional testing tools because the
generation of the SET is done in a systematic and controllable
way. In particular, if the SET is fully traversed, then we
have full knowledge about the behaviour of the program. For
example, we could prove an assertion, or discover a bug. Since
the SET is often exponential in the size of the program, full
exploration is unlikely. The key property we take away from
DSE is that upon exploring one path, it is possible to generate
a concrete instance of the start state, i.e. an (input) test case,
which would execute along this path.

The main contribution of our method is to employ pruning
DSE with a specialized interpolation. The method is optimal
in the sense that it generates test cases which produce the
highest possible MC/DC score. In previous methods, eg. [2],
[3], optimality is only possible with very small programs.

II. PROPOSED FRAMEWORK

Our method of DSE comprises three main components: A
Sequence Generator (SG), a Resource Annotator (RA), and
DSE. The SG generates a collection of boolean assignments,

a “sequence”, to the atomic boolean expressions appearing in
predicates in the (C) program. This collection, in accordance
with standard MC/DC methodology, characterizes a corre-
sponding collection of test inputs which gives an MC/DC
score, represented as a percentage. If there is a test input
for each one of these sequences, then the MC/DC score will
be 100%. Note importantly, that such a perfect score is not
always possible: some sequences are infeasible, that is, there
is no test input which would display the sequence in real
execution. Importantly, our SG generates a sufficient collection
of sequences. This means that getting test inputs for the
feasible subset of these sequences will lead to the optimal
MC/DC score. Our SG obeys short-circuit evaluation.

Consider an example predicate and its four ACs:
(a<0 || ((b<0 || c<0) && d<0)). Our SG gener-
ates six short-circuited sequences S1 to S6 where 1, 2, 0
represent True, False, and Don’t Care values for each of the
ACs: {1000}, {2101}, {2102}, {2211}, {2212} and {2220}.

Next, the RA annotates the original program so that DSE
will either discover an execution path which corresponds to
each given sequence, or report that there is no such path.
Because of this complete determination of a sequence, i.e.
a test input or a proof of infeasibility, our method is optimal
and produces the highest possible MC/DC score.

The RA first adds a ghost resource variable (κ), initialized
to zero, before the predicate. Next, for each sequence s, it
annotates the LLVM IR of the (C) program. For each truth
value in the input sequence, if not exists, an update to κ is
added. The update values for True, False, and Don’t Care
would be κ = κ ∗ 10 + 1, κ = κ ∗ 10 + 2 and κ = κ ∗ 10. We
will demonstrate this more in the following example.

Consider the control flow graph (CFG) of the predicate
in Fig. 1 where 〈T〉 and 〈F〉 represent the true and false
branches and 〈postDom〉 is the post dominator basic block of
the predicate. A set of increment basic blocks (presented in red
color in Fig. 1) are added to the LLVM IR such that by taking
the respective path of a sequence the value of κ would be equal
to the aforementioned value of the sequence at 〈postDom〉.
Next, an assert instruction is added after 〈postDom〉 where
each value represents one of the sequences. This program will
violate the assertion for all the sequences.

Finally, we address the path explosion problem of DSE.
Here we borrow and adapt recent technology. Pruning DSEs
such as TRACER [4] utilize abstraction learning [5]. This
method more popularly is known as “lazy annotations” [6],
[7]. The core feature in abstraction learning is subsumption of

Figure 1: Annotated CFG of the Example Predicate

Table I
ANALYSIS RESULTS FOR BASELINE AND OUR METHOD

Programs LOC #P/ #AC/ #S BASELINE OUR METHOD
#T #F/#I/ #U #T #F/ #I/ #U

tcas 301 10/51/86 4.9 79/7/0 6 79/7/0
zodiac 47 12/48/ 84 1.2 58/26/0 1.1 58/26/0
nsichneu 3919 126/625/878 257 769/109/0 1752 769/109/0
pals3 378 3/41/79 10.9 61/18/0 3.15 61/18/0
p28-s 2480 399/1425/1826 3347 465/1361/0 1487 465/1361/0
psyco1 437 10/99/190 ∞ 7/0/183 47 79/111/0
pals2 680 6/101/196 ∞ 16/0/180 3150 181/15/0
p10 637 136/992/1591 ∞ 282/0/1309 1597 564/1027/0
p23 3670 290/2946/3268 ∞ 68/0/3200 869 379/2889/0
p27 2182 216/1410/1645 ∞ 151/0/1494 285 410/1235/0
p31 1027 175/513/711 ∞ 2/0/709 106 109/602/0
psyco2 630 50/274/419 ∞ 15/0/404 6781 96/323/0
psyco3 627 50/275/421 ∞ 16/0/405 6667 97/324/0
psyco4 624 50/274/419 ∞ 17/0/402 6635 96/323/0
pals1 656 6/95/184 ∞ 30/0/154 ∞ 37/0/147
p28-l 2480 399/1425/1826 ∞ 242/0/1584 5981 502/1324/0

paths whose traversals are deemed to no longer be necessary
due to similarity with already-traversed paths. The technique
first employs interpolation to abstract the already-traversed
paths in the SET such that more paths later traversed can
be subsumed (pruned) in the SET. Our framework employs
TRACER with a modified form of interpolation customized for
this problem and scales to realistic programs.

III. DISCUSSION ON RESULTS

We used an Intel Core i7-6700 3.40 GHz Linux Box with
32GB RAM. The programs are from different benchmarks
SV-COMP verification tasks [8], [9], RERS [10], Embedded
Systems [11] and academic programs. We compared our
method against a baseline method which used only a standard
DSE system, KLEE [12] (timeout 3600 sec).

See Table I. Columns 1 and 2 show the benchmark name
and size (LOC). The next column shows a triple: number of
predicates (#P), number of atomic conditions (#AC) and total
number of sequences (#S.). The rest of the columns present the
result from the BASELINE method and ours. #T presents the
analysis time, and a triple: #F, #I, #U where #F is the number

of feasible sequences found within timeout, #I is the number of
(provably) infeasible sequences, and #U denotes the remainder
(denoting those sequences not determined within timeout).

The first group contains 5 programs where both our method
and the BASELINE method fully traverse the SET. The only
interesting observation is that our method is faster on 3 of
5 programs. For the other 2, the throughput speed of KLEE
shines through because: (a) tcas has a small SET (it is loop
free) and (b) nsichneu contains large number of infeasible
paths. As a result, non-pruning DSE like KLEE with good path
sensitivity has a chance to fully explore their SET rapidly.

The second group contains 6 programs where only our
method has full traversal. This means that our method is
complete, either producing a test input or proving no such
input exists, for each sequence. Thus, the set of generated test
cases for the first and second group is optimal. In contrast,
the BASELINE approach is incomplete and hence it can only
produce a conservative estimate of the test inputs.

The third group contains 5 programs. These are the largest
amongst the benchmark programs. Neither our method nor
BASELINE algorithm are able to fully traverse their SET
within timeout. Here we do not know if our method is optimal.
In a next experiment we extended the timeout to 7200 seconds
for this group and reran both methods. This time our method,
unlike BASELINE approach, is able to fully analyze 4 out of 5
programs. Overall, from our analysis of experiments, we can
infer the importance of employing pruning DSE for finding
more test cases and yielding to higher MC/DC score.

We note that finding test cases for sequences in general is as
hard as the reachability problem. Although KLEE like DSE in
general have shown good results in terms of code coverage but
they might perform poorly in solving the reachability problem.
For example, in our experiments both KLEE and our method
were able to reach high instruction coverage for most programs
(100% instruction coverage for all the programs from RERS
[10]), however, our method has been able to find in average
3X more feasible sequences in group two programs.

REFERENCES

[1] K. Hayhurst et al., “A practical tutorial on modified condition/decision
coverage,” NASA Technical Memorandum, May 2001., Tech. Rep.

[2] J. Kauttio, “Mc/dc based test selection for dynamic symbolic execution,”
G2 Pro gradu, diplomityö, 2013.

[3] M. W. Whalen et al., “A flexible and non-intrusive approach for
computing complex structural coverage metrics,” in ICSE, 2015.

[4] J. Jaffar et al., “Tracer: A symbolic execution tool for verification,” in
CAV, 2012.

[5] J. Jaffar, A. E. Santosa, and R. Voicu, “An interpolation method for clp
traversal,” in CP. Springer, 2009, pp. 454–469.

[6] K. L. McMillan, “Lazy annotation for program testing and verification,”
in CAV, 2010.

[7] ——, “Lazy annotation revisited,” in CAV, 2014.
[8] “SV-COMP Psyco Benchmarks ,” Dec. 2017. [Online]. Available:

https://github.com/sosy-lab/sv-benchmarks/tree/master/c/psyco
[9] “SV-COMP Pals Benchmarks,” Nov. 2017. [Online]. Available:

https://github.com/sosy-lab/sv-benchmarks/tree/master/c/seq-mthreaded
[10] “RERS Challenge,” 2018. [Online]. Available: http://rers-challenge.org/
[11] “Mälardalen WCET Research Group Benchmarks,” 2006. [Online].

Available: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
[12] C. Cadar et al., “Klee: Unassisted and automatic generation of high-

coverage tests for complex systems programs.” in OSDI, vol. 8, 2008.

